18 research outputs found

    Simulation of stellar instabilities with vastly different timescales using domain decomposition

    Full text link
    Strange mode instabilities in the envelopes of massive stars lead to shock waves, which can oscillate on a much shorter timescale than that associated with the primary instability. The phenomenon is studied by direct numerical simulation using a, with respect to time, implicit Lagrangian scheme, which allows for the variation by several orders of magnitude of the dependent variables. The timestep for the simulation of the system is reduced appreciably by the shock oscillations and prevents its long term study. A procedure based on domain decomposition is proposed to surmount the difficulty of vastly different timescales in various regions of the stellar envelope and thus to enable the desired long term simulations. Criteria for domain decomposition are derived and the proper treatment of the resulting inner boundaries is discussed. Tests of the approach are presented and its viability is demonstrated by application to a model for the star P Cygni. In this investigation primarily the feasibility of domain decomposition for the problem considered is studied. We intend to use the results as the basis of an extension to two dimensional simulations.Comment: 15 pages, 10 figures, published in MNRA

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Effects of different wavelengths of light on the biology, behavior, and production of grow-out Pekin ducks

    No full text
    Previous research has shown that red light conditions may improve growth and decrease aggressive behaviors in chickens and turkeys; however, more recent studies suggest that blue-green light may improve production of broilers over red light. To date, no research has been conducted to examine whether different wavelengths of light have an impact on production in the Pekin duck. To determine this, we raised Pekin ducks under aviary conditions that were similar to standard commercial barns. The ducks were kept in 3 different pens: red light (approximately 625 nm), blue light (approximately 425 nm), and white light. Light sources in each pen were standardized to produce a peak energy at 1.6 x 10(3) mu M photons/m(2)/s at the level of the ducks\u27 heads. Ducks were given ad libitum access to water and commercial duck diet, and were housed on pine shavings at a density of 0.43 m(2)/duck. Ducks were evaluated weekly for BW and condition and a subjective measure of the duck\u27s anxiety levels was determined. We found that ducks housed under blue light had significantly (P \u3c 0.01) reduced BW at every age until the end of the study (processing age; 35 d). Unlike ducks housed under red or white light, ducks housed in the blue pen showed a higher level of anxiety; while evaluators were in the pen a majority of them began panting, they were much less inquisitive than other ducks, they took longer to exhibit normal social behavior once evaluation was completed, and they frequently swarmed when no people were present. There were no differences in any measurements between the red and white-lighted pens. These data suggest that unlike the chicken, blue lights may be inappropriate for raising Pekin ducks in a commercial setting
    corecore